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Abstract—In this paper we consider the generalization of Padovan
and Perrin quaternions. We define the split (s, t)-Padovan and (s, t)-
Perrin quaternions which generalize Padovan and Perrin quaternions.
We derive the Binet-like formulas for the split (s, t)-Padovan and
(s, t)-Perrin quaternions. We establish their generating functions.
Also, we obtain certain binomial sums regarding the split (s, t)-
Padovan and (s, t)-Perrin quaternions.

Keywords—Padovan quaternion, Perrin quaternion, Binet-like for-
mula, Generating function, Binomial sum.

I. INTRODUCTION

The split quaternions were defined by James Cockle in
1849. The quaternions were defined by Hamilton in 1943 as
an extension to the complex numbers. They are formed a four
dimensional real vector space with a multiplicative operation.
They have played a significant role in physical science, dif-
ferential geometry, analysis and synthesis of mechanism and
mechines, theory of relativity and others. Unlike the quaternion
algebra, the split quaternions contain zero divisors, nilpotent
elements and non-trivial idempotents. A split quaternion is
defined by

q = q0e0 + q1e1 + q2e2 + q3e3

where q0, q1, q2 and q3 are real numbers and e0 = 1, e1 = i,
e2 = j and e3 = k are the standard basis in R4. Then we can
write

q = Sq + Vq

where Sq = q0e0 and Vq = q1e1 + q2e2 + q3e3. Sq is called
the scalar part of the split quaternion q and Vq is called the
vector part of the split quaternion q. The split quaternion
multiplication is defined using the rules;

e21 = −1, e20 = e22 = e23 = 1

e1e2 = −e2e1 = e3

e2e3 = −e3e2 = −e1

and
e3e1 = −e1e3 = e2.

This algebra is associative and non-commutative . Let q =
q0e0+ q1e1+ q2e2+ q3e3 and p = p0e0+ p1e1+ p2e2+ p3e3
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be any two split quaternions. Then the addition and subtraction
of the split quaternions is

q∓ p = (q0∓ p0)e0+(q1∓ p1)e1+(q2∓ p2)e2+(q3∓ p3)e3

and multiplication of the split quaternions is

qp = (q0e0 + q1e1 + q2e2 + q3e3)(p0e0 + p1e1 + p2e2 + p3e3)

= (q0p0 − q1p1 + q2p2 + q3p3)e0

+ (q0p1 + q1p0 + q2p3 − q3p2)e1
+ (q0p2 + q2p0 − q1p3 + q3p1)e2

+ (q0p3 + q3p0 + q1p2 − q2p1)e3

and for k ∈ R the multiplication by scalar is

kq = kq0e0 + kq1e1 + kq2e2 + kq3e3.

The basic operations on the two split quaternions given above
can also be seen in [1] and [7].
Special number sequences have play important role in mathe-
matics and applied sciences. Moreover, some special number
sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan
and Perrin sequences have many applications in art, music,
photography, architecture, painting, engineering, geometry and
others. It is well-known that the term golden ratio is defined
the ratio of two consecutive Fibonacci numbers converges to

1 +
√
5

2
≈ 1.618034.

The golden ratio has many applications in engineering,
physics, architecture, arts and other. In similar way, the ratio
of two consecutive Padovan or Perrin numbers converges to
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≈ 1.324718,

that is called as ”plastic ratio”. The plastic ratio (number)
was first defined by Gerard Cordonnier in 1924. He described
applications to architecture and illustrated the use of the plastic
number in many buildings. Furthermore, the plastic number is
the unique real root of the equation

x3 − x− 1 = 0,

the characteristic equation of Padovan number sequences. (see
[4], [6], [9]). The Padovan sequence {Pn}n≥0 is defined by the
initial values P0 = P1 = P2 = 1 and the recurrence relation

Pn+3 = Pn+1 + Pn, for all n ≥ 0. (1)
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First few terms of this sequence are
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28. The Perrin sequence
{Rn}n≥0 is defined by the initial values R0 = 3, R1 = 0 and
R2 = 2 and the recurrence relation

Rn+3 = Rn+1 +Rn, for all n ≥ 0. (2)

First few terms of Perrin sequence are
3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29. Padovan and Perrin
sequence can be found in [2], [6], [8], [9].

A generalization of the Padovan sequence {Pn}n≥0, which
is called the (s, t)-Padovan sequence, say {Pn(s, t)}n≥0 is
defined by the following recurrence relation for n ≥ 0 and any
integer numbers s > 0 and t 6= 0 such that 27t2 − 4s3 6= 0:

Pn+3(s, t) = sPn+1(s, t) + tPn(s, t), (3)

where P0(s, t) = 0, P1(s, t) = 1 and P2(s, t) = 0. To
simplify notation, we take Pn(s, t) = Pn.

A generalization of the Perrin sequence {Rn}n≥0, which is
called the (s, t)-Perrin sequence, say {Rn(s, t)}n≥0 is defined
by the following recurrence relation for n ≥ 0 and any integer
numbers s > 0 and t 6= 0 such that 27t2 − 4s3 6= 0:

Rn+3(s, t) = sRn+1(s, t) + tRn(s, t), (4)

where R0(s, t) = 3, R1(s, t) = 0 and R2(s, t) = 2s. To
simplify notation, take Rn(s, t) = Rn. The (s, t)-Padovan
and (s, t)-Perrin sequences were investigated in [2].

For every x ∈ N, one can write the Binet-like formulas for
the (s, t)-Padovan and (s, t)-Perrin sequences as the form

Pn = aαn + bβn + cγn (5)

and
Rn = αn + βn + γn (6)

where α, β and γ are the roots of the characteristic equation

x3 − sx− t = 0 (7)

associated with (1) and (2), where

a =
(β − 1)(γ − 1)

(α− β)(α− γ)
, b =

(α− 1)(γ − 1)

(β − α)(β − γ)
,

c =
(α− 1)(β − 1)

(α− γ)(β − γ)
.

The Binet-like formulas for the (s, t)−Padovan and
(s, t)−Perrin sequences were given in [2]. In the present
work we define the nth split Padovan and Perrin quaternions
by the formulas

SPn = Pne0 + Pn+1e1 + Pn+2e2 + Pn+3e3 (8)

and

SRn = Rne0 +Rn+1e1 +Rn+2e2 +Rn+3e3 (9)

where Pn and Rn are the nth Padovan and Perrin number.

II. SPLIT (s, t)−PADOVAN AND (s, t)− PERRIN
QUATERNIONS

The (p, q)-Fibonacci quaternions were defined and studied
in [5]. As generalization of the Padovan and Perrin, the
(s, t)-Padovan and (s, t)-Perrin quaternions were defined and
investigated in [3]. In this work we consider their split cases.
In this section, we define two new split quaternions that are
split (s, t)−Padovan and (s, t)−Perrin quaternions. Then, we
give their Binet-like formulas, generating functions and certain
binomial sums.

Definition 1. The split (s, t)−Padovan quaternion sequence
{SPn(s, t)}n≥0 is defined by

SPn(s, t) = Pne0 + Pn+1e1 + Pn+2e2 + Pn+3e3 (10)

where Pn is the nth (s, t)−Padovan number. To simplify
notation, we take SPn(s, t) = SPn.

Definition 2. The split (s, t)−Perrin quaternion sequence
{SRn(s, t)}n≥0 is defined by

SRn(s, t) = Rne0 +Rn+1e1 +Rn+2e2 +Rn+3e3 (11)

where Rn is the nth (s, t)−Perrin number. To simplify nota-
tion, we take SRn(s, t) = SRn.

Theorem 3 (Binet-like formula). The Binet-like formulas for
the nth split (s, t)−Padovan quaternion is

SPn = aα̂αn + bβ̂βn + cγ̂γn, n > 0 (12)

where
α̂ = e0 + αe1 + α2e2 + α3e3,

β̂ = e0 + βe1 + β2e2 + β3e3,

and
γ̂ = e0 + γe1 + γ2e2 + γ3e3.

Proof: From the definition of nth split (s, t)−Padovan
quaternion SPn in (10) and Binet-like formula for the nth
(s, t)−Padovan number Pn, we write

SPn = Pne0 + Pn+1e1 + Pn+2e2 + Pn+3e3

= (aαn + bβn + cγn)e0

+ (aαn+1 + bβn+1 + cγn+1)e1

+ (aαn+2 + bβn+2 + cγn+2)e2

+ (aαn+3 + bβn+3 + cγn+3)e3

= a(e0 + αe1 + α2e2 + α3e3)α
n

+ b(e0 + βe1 + β2e2 + β3e3)β
n

+ c(e0 + γe1 + γ2e2 + γ3e3)γ
n

= aα̂αn + bβ̂βn + cγ̂γn

Thus, the proof is completed.

Theorem 4 (Binet-like formula). The Binet-like formula for
the nth split (s, t)−Perrin quaternion is

SRn = α̂αn + β̂βn + γ̂γn, n > 0 (13)
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where
α̂ = e0 + αe1 + α2e2 + α3e3,

β̂ = e0 + βe1 + β2e2 + β3e3,

and
γ̂ = e0 + γe1 + γ2e2 + γ3e3.

Proof: From the definition of nth split (s, t)−Perrin
quaternion SRn in (11) and Binet-like formula for the nth
(s, t)−Perrin number Rn, we write

SRn = Rne0 +Rn+1e1 +Rn+2e2 +Rn+3e3

= (αn + βn + γn)e0

+ (αn+1 + βn+1 + γn+1)e1

+ (αn+2 + βn+2 + γn+2)e2

+ (αn+3 + βn+3 + γn+3)e3

= (e0 + αe1 + α2e2 + α3e3)α
n

+ (e0 + βe1 + β2e2 + β3e3)β
n

+ (e0 + γe1 + γ2e2 + γ3e3)γ
n

= α̂αn + β̂βn + γ̂γn

Thus, the proof is completed.

Theorem 5. The generating function for the nth split
(s, t)−Padovan quaternion is

GSP(x) =
e1 + se3 + (e0 + se2 + te3)x+ (te2)x

2

1− sx2 − tx3
.

Proof: Assume that the function

GSP(x) =
∞∑

n=0

SPnx
n = SP0 + SP1x+ SP2x

2

+ SP3x
3 + . . .+ SPnx

n + . . .

be generating function of the split (s, t)−Padovan quaternions.
Multiply both of side of the equality by the term −sx2 such
as

−sx2GSP(x) = −sSP0x
2 − sSP1x

3 − sSP2x
4

− sSP3x
5 − . . .− sSPnx

n+2 − . . .

and multiply by the term −tx3 such as

−tx3GSP(x) = −tSP0x
3 − tSP1x

4 − tSP2x
5

− tSP3x
6 − . . .− tSPnx

n+3 − . . .

Then, let (1− sx2 − tx3)GSP(x) = A. We write

A =SP0 + SP1x+ (SP2 − sSP0)x
2

+ (SP3 − sSP1 − tSP0)x
3 + . . .

+ (SPn − sSPn−2 − tSPn−3)x
n + . . .

Now, by using
SP0 = e1 + se3,

SP1 = e0 + se2 + te3,

SP2 = se1 + te2 + s2e3,

and
SPn − sSPn−2 − tSPn−3 = 0,

we obtain that

GSP(x) =
e1 + se3 + (e0 + se2 + te3)x+ (te2)x

2

1− sx2 − tx3
.

Thus, the proof is completed.

Theorem 6. The generating function of the nth split
(s, t)−Perrin quaternion is

GSR(x) =
3e0 + 2se2 + 3te3 + (2e1 + 3te2 + 2s2e3)x

1− sx2 − tx3

+
(−se0 + 3te1 + 2ste3)x

2

1− sx2 − tx3

Proof: Let

GSR(x) =
∞∑

n=0

SRnx
n = SR0 + SR1x+ SR2x

2

+ SR3x
3 + . . .+ SRnx

n + . . .

be generating function of the split (s, t)−Perrin quaternions.
Now multiply both of side of the equality by term −sx2 such
as

−sx2GSR(x) = −sSR0x
2 − sSR1x

3 − sSR2x
4

− sSR3x
5 − . . .− sSRnx

n+2 − . . .

and multiply by −tx3 such as

−tx3GSR(x) = −tSR0x
3 − tSR1x

4 − tSR2x
5

− tSR3x
6 − . . .− tSRnx

n+3 − . . . .

Then, let (1− sx2 − tx3)GSR(x) = B we write

B = SR0 + SR1x+ (SR2 − sSR0)x
2

+ (SR3 − sSR1 − tSR0)x
3 + . . .

+ (SRn − sSRn−2 − tSRn−3)x
n + . . .

By using
SR0 = 3e0 + 2se2 + 3te3,

SR1 = 2se1 + 3te2 + 2s2e3,

SR2 = 2se0 + 3te1 + 2s2e2 + 5ste3,

and
SRn − sSRn−2 − tSRn−3 = 0,

we obtain that

GSR(x) =
3e0 + 2se2 + 3te3 + (2e1 + 3te2 + 2s2e3)x

1− sx2 − tx3

+
(−se0 + 3te1 + 2ste3)x

2

1− sx2 − tx3

This completes the proof.

Theorem 7. Let m be a positive integer. Then,

m∑
n=0

(
m

n

)
sntm−nSPn = SP3m.
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Proof: Applying Binet-like formula (12), let∑m
n=0

(
m
n

)
sntm−nSPn = C. We obtain the identities

C =
m∑

n=0

(
m

n

)
sntm−n(aα̂αn + bβ̂βn + cγ̂γn)

=
m∑

n=0

(
m

n

)
(aα̂(sα)

n
tm−n + bβ̂(sβ)

n
tm−n + cγ̂(sγ)

n
tm−n)

Note that, for any real numbers a and b, and any positive
integer m, the identity

(a+ b)m =
m∑

n=0

(
m

n

)
anbm−n (14)

holds. Hence

aα̂(sα+ t)
m
+ bβ̂(sβ + t)

m
+ cγ̂(sγ + t)

m

α3 = sα+ t, β3 = sβ + t and γ3 = sγ + t are due to (7).
Hence,

aα̂α3m + bβ̂β3m + cγ̂γ3m

Thus, the proof is completed.

Theorem 8. Let m be a positive integer. Then,
m∑

n=0

(
m

n

)
sntm−nSRn = SR3m

Proof: Applying Binet-like formula (13) and combining
this with (14) and (7), let

∑m
n=0

(
m
n

)
sntm−nSRn = D. We

obtain the identity

D =
m∑

n=0

(
m

n

)
sntm−n(α̂αn + β̂βn + γ̂γn)

=
m∑

n=0

(
m

n

)
(α̂(sα)

n
tm−n + β̂(sβ)

n
tm−n + γ̂(sγ)

n
tm−n)

=α̂(sα+ t)
m
+ β̂(sβ + t)

m
+ γ̂(sγ + t)

m

=α̂α3m + β̂β3m + γ̂γ3m

Thus, the proof is completed.

Theorem 9. Let m be a positive integer. Then,
m∑

k=0

(
m

k

)
sm−ktkSPn−k = SPn+2m

Proof: Applying Binet-like formula (12) and combining
this with (14 ) and (7), let

∑m
k=0

(
m
k

)
sm−ktkSPn−k = E. We

obtain the identity

E =
m∑

k=0

(
m

k

)
sm−ktk(aα̂αn−k + bβ̂βn−k + cγ̂γn−k)

=
m∑

k=0

(
m

k

)
(aα̂(sα)

m−k
tkαn−m + bβ̂(sβ)

m−k
tkβn−m

+cγ̂(sγ)
m−k

tkγn−m)

=aα̂(sα+ t)
m
αn−m + bβ̂(sβ + t)

m
βn−m

+cγ̂(sγ + t)
m
γn−m

=aα̂αn+2m + bβ̂βn+2m + cγ̂γn+2m

Thus, the proof is completed.

Theorem 10. Let m be a positive integer. Then,
m∑

k=0

(
m

k

)
sm−ktkSRn−k = SRn+2m

Proof: Applying Binet-like formula (13) and combining
this with (14 ) and (7), let

∑m
k=0

(
m
k

)
sm−ktkSRn−k = F. we

obtain the identity

F =
m∑

k=0

(
m

k

)
sm−ktk(α̂αn−k + β̂βn−k + γ̂γn−k)

=
m∑

k=0

(
m

k

)
(α̂(sα)

m−k
tkαn−m + β̂(sβ)

m−k
tkβn−m

+γ̂(sγ)
m−k

tkγn−m)

=α̂(sα+ t)
m
αn−m + β̂(sβ + t)

m
βn−m

+γ̂(sγ + t)
m
γn−m

=α̂αn+2m + β̂βn+2m + γ̂γn+2m

Thus, the proof is completed.

III. CONCLUSION
The Fibonacci, Padovan and Perrin, and their generaliza-

tions play an important role in mathematics applied science, art
and architectural, etc. We firstly take into consideration split
quaternions and basic operations while preparing this work.
Then, we define the new generalizations of the Padovan and
Perrin as the split (s, t)-Padovan and (s, t)-Perrin quaternions.
We give their Binet-like formulas and the generating functions.
Also we obtain certain binomial sums and identities for them.
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[1] M. Akyiğit, H. H. Kösal, and M. Tosun, Split fibonacci quaternions,
Advances in Applied Clifford Algebra , 23(3), 2013, 535–545.

[2] G. Cerda-Morales, The (s, t)− Padovan and (s, t)−Perrin
matrix sequences, in Researchgate, preprint 2017, (DOI:
10.13140/RG.2.2.33262.20800)
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